大家好,我是小百,我来为大家解答以上问题。一次函数的性质和定义,一次函数的性质很多人还不知道,现在让我们一起来看看吧!
1、
1、一次函数在坐标轴上的图像是一条不垂直于x轴的直线。一次函数一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。k为一次函数y=kx+b的斜率。
2、一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx(k为常数,k≠0),y叫做x的正比例函数。
3、斜率k所对应的直线(有无数条,它们彼此平行),但是倾斜角只有一个,就是与x轴夹角α的正切,可以反映这样的直线对于x轴倾斜的程度。倾斜角是90°的直线(即x轴的垂线)没有斜率。
4、“函数”一词最初是由德国的数学家莱布尼茨在17世纪首先采用的,当时莱布尼茨用“函数”这一词来表示变量x的幂,即x2,x3,….接下来莱布尼茨又将“函数”这一词用来表示曲线上的横坐标、纵坐标、切线的长度、垂线的长度等等所有与曲线上的点有关的变量,就这样“函数”这词逐渐盛行。
5、在中国,古时候的人将“函”字与“含”字通用,都有着“包含”的意思,清代数学家、天文学家、翻译家和教育家,近代科学的先驱者李善兰给出的定义是:“凡式中含天,为天之函数。”中国的古代人还用“天、地、人、物”4个字来表示4个不同的未知数或变量,显然,在李善兰的这个定义中的含义就是“凡是公式中含有变量x,则该式子叫做x的函数。”这样,在中国“函数”是指公式里含有变量的意思。
6、一次函数及其图象是初中代数的重要内容,也是高中解析几何的基石,更是中考的重点考查内容。
本文到此讲解完毕了,希望对大家有帮助。