偶数有哪些(质数有哪些)

导读 大家好,我是小百,我来为大家解答以上问题。偶数有哪些,质数有哪些很多人还不知道,现在让我们一起来看看吧!质数又称素数,指在大于1的...

大家好,我是小百,我来为大家解答以上问题。偶数有哪些,质数有哪些很多人还不知道,现在让我们一起来看看吧!

质数又称素数,指在大于1的自然数中,除了1和该数自身外,无法被其他自然数整除的数(也可定义为只有1与该数本身两个正因数的数)。

一个自然数(如1、2、3、4、5、6等)若恰有两个正约数(1及此数本身),则称之为质数。大于1的自然数若不是质数,则称之为合数。

数字12不是质数,因为将12以每4个分成1组,恰可分成3组(也有其他分法)。11则无法分成数量都大于1且都相同的各组,而都会有剩余。因此,11为质数。

在数字1至6间,数字2、3与5为质数,1、4与6则不是质数。1不是质数,其理由见下文。2是质数,因为只有1与2可整除该数。接下来,3亦为质数,因为1与3可整除3,3除以2会余1。因此,3为质数。不过,4是合数,因为2是另一个(除1与4外)可整除4的数:

4 = 2 · 2

5又是个质数:数字2、3与4均不能整除5。接下来,6会被2或3整除,因为

6 = 2 · 3

因此,6不是质数。12不是质数:12 = 3 · 4。不存在大于2的偶数为质数,因为依据定义,任何此类数字n均至少有三个不同的约数,即1、2与n。这意指n不是质数。因此,“奇质数”系指任何大于2的质数。类似地,当使用一般的十进位制时,所有大于5的质数,其尾数均为1、3、7或9,因为偶数为2的倍数,尾数为0或5的数字为5的倍数。

若n为一自然数,则1与n会整除n。因此,质数的条件可重新叙述为:一个数字为质数,若该数大于1,且没有

2, 3, ..., n − 1

会整除n。另一种叙述方式为:一数n > 1为质数,若不能写成两个整数a与b的乘积,其中这两数均大于1:

n = a · b.

换句话说,n为质数,若n无法分成数量都大于1且都相同的各组。

由所有质数组成之集合通常标记为P或

前168个质数(所有小于1000的质数)为

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997 (OEIS中的数列A000040)。

本文到此讲解完毕了,希望对大家有帮助。